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Abr trac t 

The existence of an inflationary phase in anisotropic Scalar-Tensor Theories is 
investigated by meam of a c o n f o d  transformation that allows us to rewrite theses 

ly coupled to a scalar field with a a non-trivial potential. theories as gravity 
We then use the explicit form of the potential and the No Hair Theorem to conclude 
that there is an inflationary phase in all open or fiat anisotropic spacetimes in these 
theories. Several examples are constructed where the effect becomes manifest. 

. .  * 

Oporrtod by Universities Research Association Inc. under contract with the United States Department of Energy 



1 Introduction 

The existence of a very large dimensionless number of order lo4’, like the ratio of 

the gravitational to electrostatic forces between a proton and an electron, or the Hubble 

length (H-l) and the classical radius of the electron impressed Dirac [1,2] so much that 

he postulated these relations as fundamental in Nature. In order to maintain these ratios 

fixed in time, and since the Hubble length changes as the Universe expands, he was 

forced to assume the Gravitational Constant G was not a constant but a function of time. 

Moreover, it  had to be inversely proportional to the age of the Universe. However, he did 

not provide a working theory to do this. Partly motivated by Dirac’s ideas and the extra 

dimensionality of spacetime proposed by Kaluza, Jordan [3] constructed a theory capable 

of incorporating a varying G. The idea was to add an extra scalar degree of freedom 

to the already existing tensor degrees of freedom of the gravitational field and somehow 

interpret this scalar field as the Gravitational Constant G. However, the couplings where 

prescribed by the consistency of the theory with the constancy of the ratios as well as the 

principle of Equivalence (see Weinberg [4] for some more comments on this point). More 

recently, Brans and Dicke [5 ] ,  trying to incorporate Mach’s principle to a theory of gravity 

obtained a Scalar-Tensor Theories (STT) that is a particular case of Jordan’s theory [5 ] .  

The standard cosmological model provides us with an accurate picture of the uni- 

verse, however, in spite of its success and amazing flexibility, it is incapable of explaining 

things like the observed large scale flatness, homogeneity and isotropy of the Universe, 

or solving the now famous horizon a d  primordial monopole problems [6]. This set of 

&airs motivated the advent of the inflationary models first proposed by Guth and subse- 

quently modified by Albrecht and Steinhardt and by Linde [6] independently. In the new 

inflationary models, the rapid expansion appears when the dynamics of the universe is 

dominated by the vacuum energy. This is equivalent to having a period when the energy 

momentum tensor driving the expansion of the universe behaves like a cosmological con- 
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stant and the scale factor grows exponentially in time in a de Sitter fashion. During this 

time the volume increases by at least 65-e-folds. The effect of this expansion is to dilute 

the number of monopoles or any other topological beast created during the phase tran- 

sition. Moreover, it also isotropises and homogenises the inflating region leaving behind 

a homogeneous, isotropic and nearly flat universe. But where does this vacuum energy 

comes from ? Well, it is introduce ad hoc in the form of a scalar field that has a very 

special potential, namely, a flat potential. It is the flat region in this potential that acts 

as a temporary cosmological constant. 

One of the attractions of the STT, is the fact that the scalar field is inbuild in them, 

so its natural to ask whether inflation takes place in such theories. The question has been 

considered before by several authors[7], however, its been answered only in a very few 

restricted cases where special assumptions about the spacetime metric have been made. 

In most cases, it  has been done by explicitly displaying an exact solution of Einstein’s 

equations with an exponential growth. In this letter we will address the same question 

but in a way that allows us to obtain results for a wide class of spacetimes, all anisotropic 

and homogeneous models. We do this by the use of a conformal transformation that 

transforms the original theory with its non-linear and non-canonical couplings to gravity 

into one that has minimal coupling. Once we have achieved this we invoke the No Hair 

Theorem to show that for a large class of potentials, the transformed theory satisfies the 

requirements of the theorem, and so conclude that it will undergo a period of inflation. 

We will finish with a few examples. 

2 The ScalarlTensor Theory 

The equations of motion for the most general STT in vacuum can be obtained from 

varying the following action (see Will in ref.[7]) 
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where the signature is (-, +, +, +), LO($) and A($) are arbitrary functions that distinguish 

between different theories. A($) is the potential function and plays a similar role to the 

cosmological constant. For the Brans-Dicke theory LO($) = wo and A($) = 0, for the 

corresponding functions in other theories see ref. [5 ] .  
L 

We shall now show that by the use of a conformal transformation it is possible to recast 

any STT as described above, where the coupling between the scalar field and the curvature 

is non-minimal and the kinetic term for d is not canonical, into one where the coupling is 

minimal and the kinetic term is canonical. The use of the conformal transformation can 

make the complicated problem of analyzing a coupled system, much simpler. We shall 

show that the resulting theory is GR plus a scalar field. Once this is achieved we shall 

proceed to study the existence of an inflationary phase for the universe. In most cases it 

reduces to an inspection of the potential, initial conditions and a qualitative description 

of the scalar field dynamics. We shall prove that for some STT, i.e. with special choices 

of w ( 6 )  and A(J), will undergo inflation provided the initial conditions are correct. This 

will be done for any homogeneous and anisotropic model with the help of the No Hair 

Theorem [9]. Similar techniques have been used in [8] to prove and graphically understand 

similar results obtained in a variety of theories amongst which we can name the high 

derivative gravity (R + eR2), the induced gravity model ( (+2R) and various combinations 

of these models. The technique has proven very powerful in predicting inflation in all 

these theories when the spacetime is anisotropic without having to solve explicitly any 

equation of motion. 

Let us now make the conformal transformation j a g  -+ V g a g  and introduce a new field 

11 defined in the following way: 
1 a=-  
& 
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I Then the action becomes 

with V ( $ )  = -2WA Eqn. (2.4) simply describes gravity minimdy coupled to a scalar 

field $ with potential V(q5). It is at this stage where we need to ask for the form of the 

potential. If it contains a flat plateau (cosmological constant) for small or large values 

of the field, and if we can argue on physical grounds that the initial conditions are such 

that the field starts in either extreme of the potential, then the slow rollover mechanism 

will make it inflate. Both of these are necessary conditions for the theorem. Alternatively 

we need to look at the energy-momentum tensor for the scalar field and ask whether 

it satisfies the strong and dominant energy conditions necessary for the applicability of 

the No Hair Theorem (see Wald and Jensen and Stein-Schabes in [9] for more details). 

If so then this is an inflating model, regardless of the anisotropy present on the initial 

hypersurface. 

Due to the generality of the STT we cannot in general say whether there is inflation 

or not. In order to do so we have to specialize the theory, or say something about V ( + ) ,  

i.e. A($) and ~($1 .  

3 Examples 

In this section we shall make some special choices of w(4)  and A($) and use the No 

Hair Theorem to show the existence of the inflationary phase. 

a) w ( $ )  = wo and A($) = cP,,I  an^; ap < 0. Using Eqns.(2.2) and (2.3) we obtain 

4 



while the effective potential for the II, field is 

n=l n=l 

Under the assumption on the sign of the constant up we notice that when II, 4 00 the 

potential goes to 2ao, and when II, -+ -w the potential goes to 00 (see fig. 1) this is rather 

similar to what was found in ref. [9]. Clearly, for large II, the dynamics are dominated by 

the potential energy and the universe behaves as dominated by a cosmological constant. 

If II, is large and negative, then the model undergoes power law inflation. We do not know 

what the initial value of the field was, however, in the naive models we would expect it to 

be either very large or very small. It is clear that if initially it sits at the minimum of the 

potential then there will be no inflation. This example contains the original Brans-Dicke 

model with a non-zero cosmological constant. 

b) LO($) = nJm and A($) = '+lmAn&' ; n > 0 and Al+lm < 0 with m E 2 In this 

case we get 
1 - 

n=  (%)^ 
and the potential is 

a(n-l) 
-m$ l+2m 

n=l 

(3.3) 

(3-4) 

we notice that the effective potential is a polynomial and that the highest power is four, 

this corresponds to the chaotic inflationary scenario studied by Linde [lo]. So, provided 

the initial conditions are not that the field sits motionless at the bottom of the potential 

we expect inflation in these models (see Moss and Sahni in [9]). 

4 Conclusions 

We have analyzed the general Scalar-Tensor Theory trying to determined under which 

conditions these will have an inflationary period. By means of a conformal transformation 

we have shown that in general STT that have non-minimal coupling between the scalar 
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field and gravity can be rewritten so as to obtain a minimally coupled theory. The 

advantage of this is clear. The dynamics of the scalar field can be understood by looking 

at the potential since the gravitational interaction, at least in the homogeneous cases, 

reduces to having a damping term in the equation of motion for the scalar field. 

Once we have achieved this transformation we can make use of the machinery provided 

by the No Hair Theorem [9] and the energy conditions to determine if there is inflation. 

We have done this in two specific cases, and have shown that for all open or flat anisotropic 

models inflation takes place . 
The main attractive of these theories is the fact that the scalar field forms and integral 

part of the theory, it has a physical meaning and does not have to be postulated ad hoc 

as in the standard inflationary models. Of course there is still a lot of arbitrariness in 

these theories, however, in principle it is possible to determine the value and form of the 

arbitrary functions from observations. In a way the theory is falsifiable by observations. 

Furthermore, the introduction of the scalar field is motivated by some sort of fundamental 

principle related to the constancy of the aforementioned ratios. .This, of course, remains 

to be seen. 
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Figure Caption 
Fig. 1.- The Potential V ( + )  = 1 - 4e-'3/30 + 4e-43130 with $ J ~  E 6 

7 



References 
1. P.A.M. Dirac, Proc.R.Soc’. A165, 199 (1938). 

2. P.A.M. Dirac, Proc.R.Soc. A338, 199 (1974). 

3. P. Jordan, Astron. Nachr. 276, 193 (1938). 

4. S.Weinberg, Gravitation and Cosmology, John Wiley and Sons, (1972). 

5. C. Brans and R.H. Dicke, Phys. Rev. 124, 925 (1961). 
P.G. Bergmann, Int.J.Theor.Phys. 1,25 (1968). 
R.V. Wagoner, Phys. Rev. D1, 3209 (1970). 
C.M. Will, Theory and Ezperirnenl in Grau~tational Physics, CUP, (1981). 
T. Singh and L.N. Rail Gen. Rel. Grav. 15, 875 (1963). 
T. Singh and T. Singh, Inter. Jour. Math. Phys. A2, 645 (1987). 

6. L.F. Abbott and So-Young Pi, Inflationary Cosmology, World Scientific, Singapore (1986). 

7. C. Mathiashagan and V.B. Jori, Class. Quantum Grav. 1, L39 (1984) 
L.O.Pimente1, Astrophys. Space Sci. 112, 175 (1985). 
L.O.Pimente1, Astrophys. Space Sci. 116, 395 (1985). 
K. Uehara and C.W. Kim, Phys. Rev. D26, 2575 (1982). 

M. MGit and J.A. Stein-Schabes, Phys. Lett. B203, 353 (1988) 
Starobinsky and H.-J. Schmidt, Class. Quantum Grav. 4, 695 (1987). 
K. Maeda, Phys. Rev. D37, 858 (1988) 
J.D. Barrow, Nucl. Phys. B296, 697 (1988) 
K. Maeda, J.A. Stein-Schabes and T. F’utamase, Fermilab Preprint 88/70-A (1988). 

L.G. Jensen and J.A. Stein-Schabes, Phys.Rev.DI4, 931 (1986) and DS5,1146 (1987). 
M.S. Turner and L. Widrow, Phys. Rev. Lett. 57, 2237 (1986). 
G. Steigman and M.S. Turner, Phys. Lett 128B, 295 (1983). 
I.Moss and V.Sahni, Phys. Lett. 178, 159 (1986). 

8. B. Whitt, Phys. Lett. 145B, 176 (1984). 

9. R.W. Wald, Phys. Rev. D28, 2118 (1983). 

10. A.D. Linde, Phys. Lett. 129B, 177 (1983). 

8 


